Download E-books An Introduction to Manifolds (Universitext) PDF

By Loring W. Tu

Manifolds, the higher-dimensional analogs of soft curves and surfaces, are basic gadgets in sleek arithmetic. Combining facets of algebra, topology, and research, manifolds have additionally been utilized to classical mechanics, common relativity, and quantum box conception. during this streamlined creation to the topic, the speculation of manifolds is gifted with the purpose of aiding the reader in attaining a speedy mastery of the fundamental themes. via the tip of the e-book the reader will be in a position to compute, no less than for easy areas, the most simple topological invariants of a manifold, its de Rham cohomology. alongside the way in which, the reader acquires the information and abilities worthwhile for additional research of geometry and topology. The needful point-set topology is incorporated in an appendix of twenty pages; different appendices overview evidence from actual research and linear algebra. tricks and recommendations are supplied to a few of the routines and difficulties. This paintings can be used because the textual content for a one-semester graduate or complex undergraduate path, in addition to by means of scholars engaged in self-study. Requiring simply minimum undergraduate must haves, 'Introduction to Manifolds' is usually a superb beginning for Springer's GTM eighty two, 'Differential kinds in Algebraic Topology'.

Show description

Read or Download An Introduction to Manifolds (Universitext) PDF

Best Differential Geometry books

Surgery on Simply-Connected Manifolds

This ebook is an exposition of the means of surgical procedure on simply-connected gentle manifolds. Systematic examine of differentiable manifolds utilizing those principles was once all started by way of Milnor [45] and Wallace [68] and constructed largely within the final ten years. it truly is now attainable to provide a pretty whole thought of simply-connected manifolds of size ~ five utilizing this technique and that's what i'll attempt to start the following.

Lie Sphere Geometry: With Applications to Submanifolds (Universitext)

Thomas Cecil is a math professor with an unrivalled snatch of Lie Sphere Geometry. right here, he presents a transparent and finished glossy therapy of the topic, in addition to its purposes to the learn of Euclidean submanifolds. It starts off with the development of the gap of spheres, together with the basic notions of orientated touch, parabolic pencils of spheres, and Lie sphere ameliorations.

The Geometry of Kerr Black Holes (Dover Books on Physics)

This specified monograph through a famous UCLA professor examines intimately the maths of Kerr black holes, which own the houses of mass and angular momentum yet hold no electric cost. compatible for complex undergraduates and graduate scholars of arithmetic, physics, and astronomy in addition to specialist physicists, the self-contained remedy constitutes an advent to trendy ideas in differential geometry.

The Penrose Transform: Its Interaction with Representation Theory (Dover Books on Mathematics)

"Brings to the reader a massive volume of knowledge, good geared up and condensed into below 200 pages. " — Mathematical ReviewsIn contemporary many years twistor idea has turn into a tremendous concentration for college kids of mathematical physics. primary to twistor concept is the geometrical rework referred to as the Penrose remodel, named for its groundbreaking developer.

Extra resources for An Introduction to Manifolds (Universitext)

Show sample text content

Three. 7 The Wedge Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . three. eight Anticommutativity of the Wedge Product . . . . . . . . . . . . . . . . . . . . three. nine Associativity of the Wedge Product . . . . . . . . . . . . . . . . . . . . . . . . . three. 10 A foundation for k-Covectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 19 20 22 23 24 25 26 27 28 31 xii Contents difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . §4 n Differential varieties on R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . four. 1 Differential 1-Forms and the Differential of a functionality . . . . . . . . . four. 2 Differential k-Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . four. three Differential varieties as Multilinear capabilities on Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . four. four the outside by-product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . four. five Closed types and specific varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . four. 6 purposes to Vector Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . four. 7 conference on Subscripts and Superscripts . . . . . . . . . . . . . . . . . . . difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 34 34 36 37 38 forty forty-one forty four forty four bankruptcy 2 Manifolds §5 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . five. 1 Topological Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . five. 2 suitable Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . five. three delicate Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . five. four Examples of tender Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . forty eight forty eight forty nine fifty two fifty three fifty seven §6 tender Maps on a Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. 1 delicate services on a Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. 2 gentle Maps among Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 6. three Diffeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. four Smoothness when it comes to elements . . . . . . . . . . . . . . . . . . . . . . . . 6. five Examples of delicate Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. 6 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. 7 The Inverse functionality Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fifty nine fifty nine sixty one sixty three sixty three sixty five sixty seven sixty eight 70 §7 Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. 1 The Quotient Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. 2 Continuity of a Map on a Quotient . . . . . . . . . . . . . . . . . . . . . . . . . . 7. three identity of a Subset to some extent . . . . . . . . . . . . . . . . . . . . . . . . . 7. four an important for a Hausdorff Quotient . . . . . . . . . . . . . . 7. five Open Equivalence family members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. 6 actual Projective house . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. 7 the traditional C∞ Atlas on a true Projective house . . . . . . . . . . . . . difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . seventy one seventy one seventy two seventy three seventy three seventy four seventy six seventy nine eighty one bankruptcy three The Tangent house §8 The Tangent area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Contents xiii eight. 1 The Tangent house at some degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . eight. 2 The Differential of a Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . eight. three The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . eight. four Bases for the Tangent house at some degree . . .

Rated 4.97 of 5 – based on 5 votes